Пространственная модель ДНК

Рис. 5. Азотистые основания, входящие в состав нуклеиновых кислот

Американский биохимик Эрвин Чаргафф разработал точные методы определения количества азотистых оснований и установил характерные особенности химического состава нуклеиновых кислот. Это сыграло большую роль в познании молекулярной структуры ДНК. Им было установле­но, что азотистые основания, входящие в состав ДНК (рис. 5.5) и выделенные из клеток различных организмов (рис. 5.8) подчиняются закономерностям.Сумма пуриновых ос­нований (А + Г) все­гда равна сумме пиримидиновых (Ц + Т).
Содержание аденина равно содержанию тимина, а содержание гуанина — количеству цитозина A=Т; Г=Ц (рис. 5.6).Данные правила предложил ученый Эрвин Чаргафф (рис. 5.7).

Рис. 5.6. Правило Чаргаффа

Рис. 5.7. Эрвин Чаргафф (1905-2002)

Рис. 5.8. Азотистые основания, выделенные из клеток различных организмов

В 1953 г. американский молекулярный биолог Джеймс Уотсон и английский физик и генетик Френсис Крик (рис. 5.9), основываясь на данных Э. Чаргаффа и М. Уилкинса, а также Розалинда Франклин (рис. 5.10) построили модель пространственной структуры молекулы ДНК. Это открытие было удостоено высшей научной на­грады — Нобелевской премии.

Рис. 5.9. Джеймс Уотсон и Френсис Крик (1953)

Рис. 5.10. Розалинда Франклин (1920-1958), английский биофизик и учёный-рентгенограф

В соответствии с моделью Дж. Уотсона и Ф. Крика молекула ДНК состоит из двух длинных комплементарных полинуклеотидных цепей, закрученных в правильную двойную спираль.
Диаметр двойной правозакрученной спирали ДНК составляет около 2 нм, один поворот спирали (шаг) – 3,4 нм. В каждом витке (шаге) спирали находится 10 пар нуклеотидов, расстояние между нуклеотидами равно 0,34 нм (рис. 5.11).

Рис. 5.11. Третичная структура ДНК

Скелетная основа полинуклеотидных цепей содержит правильно чередующиеся сахара и фосфаты, связанные ковалентными связями. Две углеводно-фосфатные цепи расположены на внешней стороне молекулы ДНК, в то время как азотистые основания находятся внутри ее, перпендикулярно оси спирали.
Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи.
Между гуанином и цитозином образуются три водородные связи.
Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении и называется комплементарностью (рис. 5.14).
Комплементарность – это пространственная взаимодополняемость молекул или их частей, приводящая к образованию водородных связей.
Комплементарность каждой отдельной пары оснований создаёт комплементарность двух полинуклеотидных цепей в целом.

Водородные связи возникают между пуриновым основанием од­ной цепи и пиримидиновым основанием другой цепи в результате избирательного спаривания оснований.
Соединение одного из пуринов (А или Г) или пиримидинов (Ц или Т) с остатком сахара образует нуклеозид.
После присоединения к нуклеозиду фосфатной группы возникает нуклеотид, содержащий основание, сахар и фосфатную группу. Фосфатная группа присоединяется к нуклеозиду, заменяя в дезоксирибозе группу ОН– в положении 5′ (рис. 5.12).

Рис. 5.12. Образование дезоксирибонуклеотида путём соединения фосфата, дезоксирибозы и азотистого основания

Нуклеотиды – это мономеры, из которых строится полинуклеотидная цепь. Соединение друг с другом двух нуклеотидов дает динуклеотиды, трех – тринуклеотиды, затем – тетрануклеотиды, и так вплоть до цепи из сотен тысяч нуклеотидов в виде длинных линейных, неразветвленных полинуклеотидов.
Полинуклеотидные молекулы РНК имеют молекулярную массу 1,5-2,0 млн. и состоят из 4-6 тыс. нуклеотидов. Полинуклеотиды ДНК – это обычно гигантские, органические молекулы, имеющие тысячи, миллионы и даже миллиарды нуклеотидов. Последовательность нуклеотидов в цепи молекулы является первичной структурой молекулы ДНК (рис. 5.13).

Рис. 5.13. Первичная структура ДНК. Схема соединения нуклеотидов в полинуклеотидную цепь
В молекулах ДНК две полинуклеотидные цепи имеют противоположное направление в отношении связей 5’–3′ и 3’–5′, т.е. они антипараллельны (рис. 5.14).
Таким образом, в структурной организации молекулы ДНК выделяют три уровня:
первичную структуру – последовательность нуклеотидов в полинуклеотидной цепи
вторичную структуру –две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями (рис. 5.14);

третичную структуру –трехмерную спираль с определёнными пространственными характеристиками (рис. 5.11).

Рис. 5.14. Вторичная структура ДНК

Водородные связи между парами комплементарных нуклеоти­дов (две для пары А-Т и три для пары Г-Ц) относительно непроч­ные.
Поэтому комплементарные нити молекулы ДНК могут разде­ляться и соединяться вновь при изменении некоторых условий (например, изменении температуры или концентрации солей).
Разделение двухцепочечной ДНК называется денатурацией, а об­ратный процесс – образование двухцепочечной структуры ДНК – гибридизацией.
Цепь, содержащая информацию о строении белка (в направле­нии 5′-3′), называется смысловой цепью, а комплементарная – антисмысловой.
Антисмысловая цепь имеет большое значение при стабилизации структуры двойной спирали ДНК и участвует в про­цессах репликации и репарации (восстановления) поврежденных участков ДНК.
Молекулы ДНК являются гигантскими полимера­ми. Единицами измерения длины молекулы приняты: пары нукле­отидов (п.н.). У человека гаплоидный набор содержит 3,2х109 пар нуклеоти­дов.
Почти вся ДНК клетки содержится в ядре в виде 46 плотно упакованных, суперскрученных за счет взаимодействий с ядерными белками, структурах – хромосомах. Сравнительно небольшая часть ДНК (около 5%) ло­кализована в митохондриях.

Дополнительная информация из Википедии по теме: Пространственная модель ДНК

Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа- аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например фотосинтетический комплекс.

Кристаллы различных белков, выращенные на космической станции « Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для изучения пространственных структур этих белков.

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки- ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все незаменимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов, за что в 1962 году они получили Нобелевскую премию по химии.

Смотри полный текст на Wikipedia

Обсуждение темы

Ваш e-mail не будет опубликован. Обязательные поля помечены *