Основные законы геометрической оптики

Длины волн видимого света лежат в диапазоне 0,4 ….. 0,75 мкм. Геометрическая оптика представляет собой предельный случай волновой оптики при . В геометрической оптике отвлекаются от волновой природы света, это возможно, когда дифракционные эффекты пренебрежимо малы. В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представления о свете как совокупности световых лучей – линий, вдоль которых распространяется поток световой энергии. В оптически изотропной среде световые лучи ортогональны к волновым поверхностям и направлены в сторону внешних нормалей к этим поверхностям. В оптически однородной среде лучи прямолинейны. Световой пучок – совокупность световых лучей.
1. Закон прямолинейности распространениясвета: в оптически однородной среде свет распрстраняется прямолинейно. В неоднородной среде световые лучи искривляются. Путь, по которому распространяется свет в неоднородной среде, может быть найден с помощью вариационного принципа Ферма: свет распространяется по такому пути, для прохождения которого ему требуется минимальное время. Другая формулировка принципа Ферма: свет распространяется по такому пути, оптическая длина которого минимальна. Оптической длиной пути света между двумя точками в неоднородной среде называется величина:
(6.35.11)
где – абсолютный показатель преломления среды, – геометрическая длина пути. В однородной среде .
2. Закон независимости световых лучей (световых воздействий):световые лучи (пучки световых лучей) могут пересекаться, не возмущая друг друга, и распространяться после пересечения независимо друг от друга.
На границе раздела двух оптических сред световые лучи могут отражаться и преломляться.
3. Закон отражения света:луч падающий, луч отраженный и перпендикуляр, проведенный в точке падения к границе раздела двух сред, лежат в одной плоскости, причем угол отражения равен углу падения :
4. Закон преломления:луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела двух сред в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:
(6.35.12)
где – относительный показатель преломления второй среды относительно первой.
Полное внутренне отражение света. Если свет распространяется из оптически более плотной среды в оптически менее плотную > , то < 1, т.е. угол преломления больше угла падения. Если увеличивать угол падения, то будет увеличиваться угол преломления. И при некотором предельном угле падения (предельном угле), угол преломления станет равным = 90°. При этом интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего. Значение предельного угла определим из выражения (6.35.12), подставив в него 90º:

(6.35.13)
Таким образом, при углах < < 90° падающий луч не преломляется во вторую среду, причем интенсивность отраженного и падающего лучей равны. Это явление называется полным внутренним отражением.

5. Закон обратимости световых лучей:если навстречу лучу, претерпевшему ряд отражений и преломлений пустить другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Дополнительная информация из Википедии по теме: Основные законы геометрической оптики

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах, отражения света от зеркально-отражающих поверхностей и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Основное понятие геометрической оптики — это световой луч. При этом подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

Законы геометрической оптики являются частным предельным случаем более общих законов волновой оптики, в предельном случае стремления длины световых волн к нулю. Так как свет физически является распространением электромагнитной волны, происходит интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т. е. наблюдается дифракция. Интерференция и дифракция находятся вне предмета изучения оптических свойств оптических систем средствами геометрической оптики. Однако, в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь дифракционной расходимостью пучка света и считать, что лучи света распространяются по отрезкам прямых, до преломления или отражения.

Геометрическая оптика неполно описывает оптические явления, являясь упрощением более общей волновой оптической теории. Но широко используется, например, при расчёте оптических систем, так как её законы математически более просты по сравнению с обобщающими волновыми законами, что существенно снижает математические трудности при анализе и синтезе оптических систем. Приблизительная аналогия между геометрической и волновой оптиками - как между ньютоновской механикой и общей теории относительности.

Помимо пренебрежения волновыми эффектами в геометрической оптике также пренебрегают квантовыми явлениями. В геометрической оптике скорость распространения света считается бесконечной (поэтому динамическая физическая задача превращается в чисто геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет математической трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с влиянием прохождения света через оптические среды, например, изменения показателя преломления среды под воздействием мощного излучения. Эти эффекты, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей ( принцип суперпозиции).

Согласно этому принципу, лучи света в среде не взаимодействуют. В геометрической оптике нет таких понятий, как амплитуда, частота, фаза и вид поляризации светового излучения, но и в волновой линейной оптике постулируют принцип суперпозиции. Иными словами, и в волновой линейной оптике, и в геометрической оптике принимается, что лучи света и оптические волны не влияют друг на друга и распространяются независимо.

Смотри полный текст на Wikipedia

Обсуждение темы

Ваш e-mail не будет опубликован. Обязательные поля помечены *