Основные показатели анализа динамических рядов

Для анализа динамических рядов в статистике используются такие показатели, как уровень ряда, средний уровень, абсолютный прирост, темп роста, коэффициент роста, темп прироста, коэффициент опережения, абсолютное значение одного процента прироста.
Уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда.
Абсолютный прирост– это один из самых важных статистических показателей, он характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными.
Для динамического ряда у0 , у1 , у2 ,…, yn—1, yn, состоящего из n + 1 уровней, абсолютный прирост определяется по формулам:
1) цепной: ΔI= уi – уi—1;
2) базисный Δ = уi – у0 ,
где yi – текущий уровень ряда;
yi—1 – уровень, предшествующий уi;
y0 – начальный уровень ряда.
Формула среднего абсолютного прироста:

где Δy – средний абсолютный прирост;
yn – конечный уровень ряда;
y0 – начальный уровень ряда.
Вычисляют показатели темпа роста и темпа прироста. Темп роста является самым распространенным статистическим показателем, который характеризует отношение данного уровня статистического процесса к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными а к начальному – базисными.
Темпы роста вычисляются по формулам:
1) цепной:

2) базисный:

где yi – текущий уровень ряда;
yi—1 – уровень, предшествующий уi;
у0 – начальный уровень ряда.
Если у темпов роста база сравнения принимается за 1, то полученные статистические показатели называются коэффициентами роста.
Темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста. Для этого надо от темпа роста отнять 100 или от коэффициента роста – 1, в последнем случае получим коэффициент прироста Кпр.

Темпы прироста рассчитываются по следующим формулам:
1) цепной: Тпр. = (у – yi—1); yi—1 = Тр.ц. – 100 или (Кр.ц. – 1) х 100;
2) базисный: Тпр. = (уi – у0 ); у0 = Тр.б. – 100 или (Кр.б. – 1) х 100.
Для характеристики темпов роста и прироста в среднем за весь период рассчитывают средний темп роста и прироста. Средний темп (коэффициент) роста определяется по формуле средней геометрической, когда средний темп роста вычисляется по абсолютным данным первого и последнего членов динамического ряда, применяется следующая формула средней геометрической:

где у1 – начальный уровень;
yn – конечный уровень;
n – число членов ряда.
Если имеются цепные коэффициенты роста, то средний коэффициент роста определяется по формуле:

где К1 , К2 , К3 … Kn – коэффициенты роста за любой период.
Коэффициент опережения– это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени Обозначив коэффициент опережения Kоп, базисные коэффициенты роста первого ряда динамики – через К1 , второго – К11 , Тогда:
Коп = К1 / К11 .
Данный коэффициент показывает, во сколько раз будет быстрее расти уровень одного ряда динамики по сравнению с другим Отношение абсолютного прироста к темпу прироста представляет собой абсолютное значение одного процента по формуле:
А% = Δ (абсолютный прирост) / Тпр.
22232425262728293031

Дополнительная информация из Википедии по теме: Основные показатели анализа динамических рядов

Трёхмерное схематичное изображение столбчатой диаграммы

Диагра́мма ( греч. Διάγραμμα (diagramma) — изображение, рисунок, чертёж) — графическое представление данных линейными отрезками или геометрическими фигурами, позволяющее быстро оценить соотношение нескольких величин. Представляет собой геометрическое символьное изображение информации с применением различных приёмов техники визуализации.

Иногда для оформления диаграмм используется трёхмерная визуализация, спроецированная на плоскость, что придаёт диаграмме отличительные черты или позволяет иметь общее представление об области, в которой она применяется. Например: финансовая диаграмма, связанная с денежными суммами, может представлять собой количество купюр в пачке или монет в стопке; диаграмма сравнения количества подвижного состава — различную длину изображённых поездов и т. д. Благодаря своей наглядности и удобству использования, диаграммы часто используются не только в повседневной работе бухгалтеров, логистов и других служащих, но и при подготовке материалов презентаций для клиентов и менеджеров различных организаций.

В различных процессорах графопостроения ( графических программах) и электронных таблицах при изменении данных, на основе которых построена диаграмма, она будет автоматически перестроена с учётом внесённых изменений в таблицу исходных данных. Это позволяет быстро сравнивать различные показатели, статистические данные и т. д. — можно вводить новые данные и сразу видеть изменения диаграммы.

Смотри полный текст на Wikipedia

Обсуждение темы

Ваш e-mail не будет опубликован. Обязательные поля помечены *